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Abstract
With the long-term accumulation of high-quality educational data, artificial intelligence (AI) has shown excellent performance
in knowledge tracing (KT). However, due to the lack of interpretability and transparency of some algorithms, this approach
will result in reduced stakeholder trust and a decreased acceptance of intelligent decisions. Therefore, algorithms need to
achieve high accuracy, and users need to understand the internal operating mechanism and provide reliable explanations for
decisions. This paper thoroughly analyzes the interpretability of KT algorithms. First, the concepts and common methods of
explainable artificial intelligence (xAI) and knowledge tracing are introduced. Next, explainable knowledge tracing (xKT)
models are classified into two categories: transparent models and “black box” models. Then, the interpretable methods used
are reviewed from three stages: ante-hoc interpretable methods, post-hoc interpretable methods, and other dimensions. It is
worth noting that current evaluation methods for xKT are lacking. Hence, contrast and deletion experiments are conducted
to explain the prediction results of the deep knowledge tracing model on the ASSISTment2009 by using three xAI methods.
Moreover, this paper offers some insights into evaluation methods from the perspective of educational stakeholders. This
paper provides a detailed and comprehensive review of the research on explainable knowledge tracing, aiming to offer some
basis and inspiration for researchers interested in the interpretability of knowledge tracing.

Keywords Explainable artificial intelligence · Knowledge tracing · Interpretability · Evaluation

1 Introduction

The emergence and application of numerous educational
tools, such as profiling and prediction [1], intelligent tutoring
systems [2, 3], assessment and evaluation [4], adaptive sys-
tems and personalization [5, 6], are transforming traditional
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methods of teaching and learning.Knowledge tracing (KT) is
an important research direction in the field of artificial intel-
ligence in education (AIED) that can automatically track the
learning status of students at each stage. KT has been widely
used in intelligent tutoring systems, adaptive learning sys-
tems and educational gaming [7, 8]. Recently, deep learning-
based methods have significantly improved the performance
in KT tasks; however, this improvement comes at the cost of
interpretability [9, 10]. A lack of explainability is not con-
ducive for stakeholders to understand the reasons behind an
algorithm’s decisions, which may reduce stakeholders’ trust
in these tools. For instance, if a knowledge tracing model
yields unrealistic predictions, teachersmay fail to understand
the actual knowledge level of their students, and studentsmay
not receive an accurate assessment of their weaknesses. In
addition, it is not easy for users or regulators to find defects
in black box applications, which may raise security issues,
such as learner resistance [11] or an increase in high-risk
students [12]. To solve the above issues, researchers have
been attempting to improve the interpretability of AI in var-
ious educational tasks, such as explainable learner models
[13–15], explainable recommender systems [16], explainable

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-024-05509-8&domain=pdf


6484 Y. Bai et al.

at-risk student prediction [17, 18], and explainable personal-
ized interventions [19].

To the best of our knowledge, there has not been a com-
prehensive survey of related research on the interpretability
of knowledge tracing. This paper aims to fill this gap. Com-
pared to the existing knowledge tracing surveys [11, 20–22],
this study primarily focuses on explainable algorithms and
knowledge tracing interpretability. The motivation behind
this paper is threefold. First, it aims to provide a detailed
and comprehensive review of the research on explainable
knowledge tracing (xKT). Second, different interpretability
methods for knowledge tracing should be compared, and
evaluation methods should be explored. Finally, this study
aims to provide a foundational and inspirational resource for
researchers interested in the field of explainable knowledge
tracing.

1.1 Contributions

The contributions of this survey are to provide an in-depth
examination of the current status of explainable knowledge
tracing. By doing so, it aims to establish a solid foundation
of understanding and inspire additional research interest in
this rapidly growing area.

Inspired by the classification criteria of xAI for complex
object models as delineated by Arrieta et al. [9], this paper
offers a novel categorization of knowledge tracing models
into two distinct types: transparent models and black-box
models. This dichotomy is further explored with a detailed
examination of interpretable methods tailored to these mod-
els across three critical stages: ante hoc, post hoc, and other
dimensions.

Moreover, the current evaluation methods for explainable
knowledge tracing are still lacking. In this paper, contrast and
deletion experiments are conducted to explain the prediction
results of the deep knowledge tracing model on the same
dataset by using three XAI methods. Furthermore, this work
extends an insightful overview into the evaluation of explain-
able knowledge tracing, tailored to varying target audiences,
and delves into the prospective directions for the future devel-
opment of explainable knowledge tracing.

1.2 Systematic literature review (SLR) and execution

In this paper, the systematic literature review (SLR) method-
ology was adopted. This methodology was developed by
Kitchenham and Charters [23] and is specifically designed
for comprehensive analyzes in software engineering and
computer science. The SLR methodology is significant
because of its systematic approach to collating and synthe-
sizing literature, providing a comprehensive understanding
of the interpretability of knowledge tracing. The survey pro-
cess commenced with the formulation of specific research

questions, focusing on the application and implications of
xAI in knowledge tracing. The primary questions addressed
were as follows: a)Howcan the interpretability of knowledge
tracing algorithms be improved? b)What are the applications
and classifications of xAI in knowledge tracing? c) How can
explainable knowledge racing models be effectively evalu-
ated?

Our search strategy involved a comprehensive list of key-
words, such as “explainable artificial intelligence”, “xAI”,
“explainable”, “explainability”, “explanation”, “interpretable”
and “knowledge tracing”. These keywords were chosen
based on their prevalence in the current literature and rel-
evance to our research questions. We used the Boolean
operators ‘AND’ and ‘’OR’ to construct detailed search
strings. We conducted searches in databases such as IEEE
Xplore, ACM Digital Library, Science Direct, and Springer-
Link. These databases were selected for their extensive
coverage of computer science and AI literature. From an
initial pool of 1,783 studies, 517 were screened based on
their relevance to knowledge tracing. After a full-text review,
59 papers were selected based on our inclusion and exclu-
sion criteria, and the search period ended on November
2023.

InclusionCriteria: 1)Relevance: Studiesmust focus on the
interpretability of knowledge tracing algorithms, including
theoretical analyses, application case studies, and empiri-
cal evaluations. 2) Novelty and Contribution: Studies should
offer novel insights or approaches in the field of knowl-
edge tracing interpretability. This includes introducing new
methodologies, providing unique theoretical perspectives, or
presentingnovel empirical findings that significantly advance
the understanding of the topic. 3) Publication Quality: Stud-
iesmust be published in peer-reviewed journals or conference
proceedings. In cases where no peer-reviewed version is
available, but the study is highly relevant to the research
topic, non-peer-reviewed versions (e.g., arXiv preprints) will
also be considered for inclusion. 4) Language: The study
must be written in English. Exclusion Criteria: 1) Rele-
vance: Studies not directly addressing the research questions,
specifically those not focusing on the interpretability of
knowledge tracing algorithms, will be excluded. 2) Empir-
ical and Methodological Rigor: Studies lacking empirical
data support or detailed methodological descriptions will be
excluded. This includes opinion pieces or conceptual frame-
work studies without specific empirical analysis.

The number of papers published each year is shown in
Fig. 1. Research on the interpretability of knowledge tracing
has shown a significant increasing trend since 2019, indicat-
ing that researchers have realized that high accuracy alone is
insufficient to gain the trust of stakeholders when applying
AI models to real-world educational scenarios, and improv-
ing the interpretability of model decisions is a crucial issue
that needs to be addressed.
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Fig. 1 The number of
publications per year:
Knowledge tracing and
knowledge tracing with
interpretability

1.3 Structure

The remainder of this survey is organized as follows.
Section 2 discusses the relevant research on explainable arti-
ficial intelligence and knowledge tracing while also empha-
sizing the importance of interpretability in knowledge tracing
algorithms. Section 3 delves further into explainable knowl-
edge tracing, offers insights into its various dimensions and
implications, and presents a detailed examination of inter-
pretable methods suitable for explaining knowledge tracing
models. The focus of Section 4 is on the methodologies
for scientifically evaluating the interpretability of knowledge
tracing models. Finally, Section 5 outlines future research
directions in explainable knowledge tracing, pinpointing key
areas that warrant further investigation and innovation. To

enhance readers’ understanding of this paper’s architecture,
we depict it in detail in Fig. 2.

2 Background

This section thoroughly examines the developmental back-
ground of KT and xAI, presenting the latest frameworks
and methodologies in these fields. It delves into the con-
cepts, classifications, and evolution of KT models while
revealing the inherent limitations of these models. The
section also explores the ongoing challenge of finding a
balance between model accuracy and interpretability, dis-
cussing how to achieve the optimal compromise between
the two. Additionally, it offers an in-depth analysis of

Fig. 2 The concept map of this
survey
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Table 1 The taxonomies of knowledge tracing

Category Description Representative Works

Markov process-based
knowledge tracing

Assuming that a student’s learningprocess is representable as aMarkovprocess,
it can be modeled with probabilistic models.

BKT [28] DBKT [29]

Logistic knowledge tracing The logistic function represents the probability of a student answering an
exercise correctly, under the premise that this probability is expressible as a
mathematical function involving the student and the KC parameter. The logis-
tic model posits that students’ binary answers (correct or incorrect) adhere to
Bernoulli distributions.

LFA [30] PFA [31] KTMs [32]

Deep learning-based
knowledge tracing

DLKT models can simulate changes in students’ knowledge states and encap-
sulate a broad spectrum of complex features, which might be challenging to
extract through other methods.

DLKT: [27, 33–40]

xAI’s fundamental principles, methodologies, and evalua-
tion mechanisms, underscoring its crucial role in enhancing
transparency and comprehension of complex AI systems.
Specifically, the section explores the application of tailored
explanation methods in the KT domain, proposing targeted
solutions for both professional and lay users. By compre-
hensively analyzing the theoretical foundations and practical
applications of KT and xAI, this chapter aims to provide
groundbreaking insights into the interpretability of knowl-
edge tracing.

2.1 About knowledge tracing: concepts,
taxonomies, evolution, limitations

Knowledge tracing has become a key component of learner
models. A large amount of historical learning trajectory
information provided by an intelligent tutoring system (ITS)
is used to model learners’ knowledge states and predict
their performance in future exercises [24]. Thus, knowledge
tracing provides personalized learning strategies [25] and
learning path recommendations [26] for education stake-
holders and is a crucial element of adaptive education.
Specifically, knowledge tracing is a task for predicting stu-
dents’ performance in future practice according to changes in
learners’ knowledge mastery in historical practice [27]; this
task involves two main steps: 1) modeling learners’ knowl-
edge state according to their historical practice sequence
and 2) predicting learners’ performance in future practice.
In other words, this task can be formulated as a supervised
time series learning task, where Xi = {et , rt } represents a
student’s answer pair, et represents the exercise ID, and rt
represents the answer result for related exercise et , rt ∈ {0, 1}
(1 indicates the correct answer and vice versa). Given a stu-
dent’s exercise sequence X = {x1, x2, x3, . . . , x(t−1)} and
the next exercise, the task objective is to predict the correct
probability P(rt = 1|X , et ) of the exercise et .

According to the general classification method of knowl-
edge tracing models, existing models can be classified into

the following three categories [21]: 1)Markov process-based
knowledge tracing, 2) logistic knowledge tracing, and 3) deep
learning-based knowledge tracing (DLKT). The taxonomies
of knowledge tracing are shown in Table 1. Next, we intro-
duce a series of seminal works on the aforementioned three
types ofmodels and outline the timeline of knowledge tracing
evolution, as shown in Fig. 3.

In 1994, Corbett et al. proposed Bayesian knowledge
tracing (BKT) [28], which is based on a two-state Hidden
Markov Model(HMM) that treats student knowledge states
as hidden variables [41]. However, since the model uses a
shared set of parameters for the same knowledge compo-
nent (KC), it cannot personalize modeling for students at
different levels. To overcome this limitation, researchers have
added personalized features to make the model more real-
istic, leading to the emergence of various variations based
on Bayesian knowledge tracing, marking the initial phase
of knowledge tracing research. One notable improvement is
dynamic BKT (DBKT) [29]. To address the issue of BKT
modeling each KC individually, DBKT employs dynamic
Bayesian networks to represent multiple KCs jointly in a
single model. This approach models the prerequisite hierar-
chies and relationships within KCs. Both DKT and DBKT
are representative models of knowledge tracing based on the
Markov process. In 2006, Cen et al. [30] proposed learn-
ing factor analysis (LFA), which inherits the Q matrix used
in psychometrics to assess cognition and extends the theory
of learning curve analysis. An improved LFA model is per-
formance factor analysis (PFA) [31], which was developed
in 2009. Additionally, knowledge tracing machines (KTMs)
[32] utilize a factorization machine to model all variable
interactions. These three methods are representative mod-
els of logistic knowledge tracing, and a detailed explanation
of each will be provided in Section 3.2. In general, logis-
tic knowledge tracing has achieved better performance than
BKT, and knowledge tracing has gradually entered a devel-
opment period [42]. Since deep knowledge tracing (DKT)
[27] was proposed in 2015, deep learning techniques have
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Fig. 3 The timeline of seminal works toward knowledge tracing

shown more vital feature extraction ability in knowledge
tracing than the other two types of models. Based on this
seminal work, much deep learning-based knowledge trac-
ing (DLKT) has emerged. For example, researchers have
applied deep learning techniques to knowledge tracing in
various ways. Below, we list several categories of represen-
tative work: 1) memory-aware knowledge tracing: DKVMN
[33]; 2) attention-aware knowledge tracing: SAKT [35] and
AKT [36]; 3) graph-based knowledge tracing: GKT [37] and
HGKT [43]; 4) relation-aware knowledge tracing: RKT [38];
5) exercise-aware knowledge tracing: EKT [39]; and 6) inter-
pretable knowledge tracing: TC-MIRT [44], IKT [40], QIKT
[45], GCE [46], and stable knowledge tracing using causal
inference [47].

As shown in Fig. 3, before the emergence of deep learn-
ing in knowledge tracing, Bayesian knowledge tracing and
logistic knowledge tracing were widely used because of their
relatively simplemodel structures andpowerful interpretabil-
ity [48]. However, due to the massive and multidimensional
nature of online learning data, these two types of models
were unable to achieve good performance on big data [49].
Deep learning-based models have a clear advantage in pro-
cessing large datasets. However, when applied to real-world
teaching scenarios, DLKT may face the following chal-
lenge: the large number of network layers and parameters
in deep networks may limit the interpretability of the gener-
ated parameters. Additionally, the lack of interpretability in

deep learning-based models can also lead to potential ethical
and privacy issues. Stakeholders need to be able to trust the
models and understand how the models make decisions.

Overall, DLKT models exhibit strong performance but
poor interpretability[11], while simple models with strong
interpretability are far weaker than the former, as shown in
the upper left corner of Fig. 3. Consequently, the tradeoff
between interpretability and performance poses a signifi-
cant challenge for researchers challenge for researchers. In
recent years, researchers have utilized various methods to
explain knowledge tracing models and have attempted to
maximize transparency while ensuring model performance.
In Section 3, we will elaborate on the interpretable methods
existing in the above proposed models.

2.2 About explainable artificial intelligence (xAI):
a brief overview

The goal of explainable artificial intelligence (xAI) is to
provide an understanding of the internal workings of a sys-
tem in a manner that humans can comprehend. XAI aims to
answer questions such as “How did the model arrive at this
result?”, “Will different inputs yield the same result?”, and
“What is the reliability of the model’s outputs?”. In essence,
xAI’s purpose is to provide an explanation to the explainees
regarding why the model generates the corresponding output
based on the input. Based on the diverse needs of explainees,
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explainers offer appropriate types of explanations. The pro-
cess of explanation provided by xAI enhances explainees’
degree of trust in the system, thus increasing the system’s
utility ratio across various industries. To enhance the read-
ers’ understanding of explainable artificial intelligence, we
introduce the xAI framework illustrated in Fig. 4. Improving
the interpretability of algorithms is important in AIED, and
the benefits can be summarized as follows: 1) Developers
can enhance the transparency of models in a more scientific
way, which can lead to better model optimization. 2) Trans-
parency can help domain experts discover the cognitive rules
in the learning process, leading to deeper insights and bet-
ter decision-making. 3) Transparency can help users better
understand the reasons and logic behind AI-driven decisions,
which can increase their trust in the technology. 4)Regulatory
authorities can use transparency to achieve effective super-
vision and ensure the safety of intelligent products used in
education while also ensuring compliance with the law.

Existing algorithms can be classified as transparent (white
box) or blackboxmodels, dependingon their complexity [67]
(details in Section 3.1). Transparent models are character-
ized by simple internal components and self-interpretability,
allowing users to intuitively understand their internal opera-
tion mechanism [68]. A black box model refers to a model
with a complex, nonlinear relationship between the input
and output, with an operating mechanism that is difficult to
understand, such as that of a neural network [69]. Based on
the characteristics of these two models, xAI methods are

typically categorized as ante-hoc interpretable methods or
post-hoc interpretable methods [70]. Ante-hoc interpretable
methods are mainly applied to models with simple struc-
tures and strong interpretability (such as transparent models)
or to build interpretable modules in the model to make it
intrinsically interpretable. In contrast, post-hoc interpretable
methods, such as black box models, develop interpretive
techniques to interpret trained machine learning models.
Post-hoc interpretable methods are usually subdivided into
model-specific approaches and model-agnostic approaches
based on their application scope [71]. These methods are
introduced in detail in the following sections. Table 2 pro-
vides an overview of representative interpretable methods.

There is currently nowidely accepted scientific evaluation
standard for xAI. Different experts from various disciplines
have conducted preliminary investigations based on differ-
ent evaluation objectives, such as the characteristics of the
model being evaluated or the requirements of users and appli-
cation scenarios [72]. One prominent evaluation method is
the three-level approach proposed by Doshi Velez et al.
[73], which includes the following steps: 1) application-
grounded evaluation, 2) human-grounded evaluation, and
3) functionally-grounded evaluation. These three levels of
evaluation provide useful frameworks for evaluating the
interpretability of xAI systems in different contexts.

Generally, application-level evaluation is considered an
effective approach because the interpretation is applied to the
appropriate field and evaluated by professionals, resulting in

Fig. 4 The framework of explainable artificial intelligence (xAI)
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Table 2 A summary of representative interpretable methods

Methods Year Stage Category Domain Description
Anc-hoc Post-

hoc
Model-
specfic

Model-
Agnostic

Attention [50] 2014 � � CV/NLP Attention weight matrix visualization

Bayes Rule List [51] 2015 � � − Trees and Rule-based Models

Generalized additive
models (GAMs) [52]

2015 � � − The final decision form is obtained by com-
bining each single feature model with linear
function

Neural AdditiveModel
[53]

2020 � � CV Trainmultiple deep neural networks in an addi-
tive fashion such that each neural network
attend to a single input feature

Activation Maximiza-
tion [54]

2010 � � CV Maximize neuronal activation by identifying
the optimal input for a neuron at a specific net-
work layer

Gradient-based
Saliency Maps [55]

2013 � � CV The back propagation mechanism of DNN is
used to propagate the decision importance sig-
nal of the model from the output layer neurons
to the input of the model layer by layer to
deduce the feature importance of the input
samples

DeConvolution Nets [56] 2014 � � CV

Guided Backprops [57] 2015 � � CV

SmoothGrad [58] 2017 � � CV

Layer-wise Relevance
BackPropagation
(LRP) [59]

2015 � � CV/NLP

Salient Relevance (SR)
Map [60]

2019 � � CV

Class Activation Map-
ping (CAM) [61]

2016 � � CV The neural network’s feature map is utilized to
ascertain the significance of each segment of
the original image

Grad-CAM [62] 2017 � � CV

Grad-CAM++ [63] 2018 � � CV

Local Interpretable
Model-Agnostic
Explanations (LIME) [64]

2016 � � CV An interpretable model with simple structure
is used to locally approximate the decision
result of the model to be explained for an input
instance

SHapley Additive
exPlanations (SHAP) [65]

2017 � � CV Reflects the influence of each feature in the
input sample and shows the positive and neg-
ative influence

Concept Activation
Vectors(CAV) [66]

2018 � � CV Measures the relatedness of concepts within
the model’s output

more convincing results. Currently, the popular classification
method for xAI evaluation involves dividing it into subjec-
tive and objective evaluations based on whether humans are
involved [80, 86]. Table 3 shows the evaluationmethods,met-
rics, and current limitations of both subjective and objective
evaluation in xAI. It is important to carefully select appro-
priate evaluation metrics based on the specific features and
goals of the evaluated xAI system. Overall, the combination
of subjective and objective evaluation methods may be the
most effective approach for assessing the interpretability of
xAI systems while balancing cost and performance.

2.3 What are good explanations for knowledge
tracing?

According toMerriam-Webster, “interpret” means to present
something in understandable terms and explain its mean-
ing [87]. However, what constitutes a good explanation
varies across different fields, and experts have attempted
to define it in different ways. In computer science, Lipton
[88] emphasized the importance of comparative explana-
tions, i.e., whether the predicted outcome Y will change
for different inputs X . Physicist Max Tegmark described
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Table 3 Classification of xAI Evaluation Methods Based on User Involvement

Angles Methods Limitations

Subjective evaluation Qualitative evaluation based on open-ended questions
[74–76]; Quantitative evaluation based on closed-ended
questions [77, 78]; A mixed-methods approach that com-
bines both qualitative and quantitative evaluation. [79, 80]

This method may be susceptible to bias and variability
owing to individual differences among evaluators. More-
over, the requisite for professional human resources can
lead to elevated evaluation costs.

Objective evaluation Fidelity [81]; Consistency [82]; Stability [80]; Sensitivity
[80]; Causality [83]; Complexity [84, 85]

Models might rely on particular evaluation methods, and
varying metrics could yield disparate results.

a good explanation as one that answers more questions
than asked [89]. Moreover, psychology researchers have
highlighted the significance of explanations in learning and
inference and how individuals’ explanatory preferences can
impact explanation-based processes in a systematic way
[90]. In certain scenarios of adaptive education, researchers
have used verbal and visual explanations [91] or interactive
interfaces [92] to provide explanations and have achieved
positive outcomes. For example, Cristina Conati et al. [93]
added an interactive simulation program to the adaptive
CSP (ACSP) applet to provide an explanation function. The
research results demonstrated that providing explanations
can enhance students’ trust in ACPS prompts.

Explanations also play a pivotal role in the process of
knowledge tracing, but what are good explanations for
knowledge tracing? Research suggests that explanations
must be audience-specific and goal-oriented [72, 94]. Stake-
holders in knowledge tracing are divided into professional
users (developers, researchers) and non-professional users
(teachers, students), each requiring tailored explanations
[95]. For professionals, explainability enhances understand-
ing, system debugging, model optimization, and credibility
[96]. For non-professionals, it facilitates comprehension of
learning processes, encourages result acceptance, and boosts
model satisfaction [97]. The field has developed methods
ensuring both accuracy and transparency, making model
operations and decisions clear to all users, thereby improv-
ing interpretability. Further details on these methods will be
provided in the next section.

3 Explainability techniques for explainable
knowledge tracingmodels

This section delves into the key aspects of enhancing the
interpretability of knowledge tracing models. Initially, we
categorize and discuss explainable knowledge tracing mod-
els, focusing on the critical distinctions between transparent
models and complex black-box models. This discussion lays
the groundwork for understanding the internal mechanisms
of thesemodels. Subsequently,we shift our focus to exploring

methods for augmenting the interpretability of knowledge
tracing. These methods encompass both ante-hoc and post-
hoc strategies, as well as other dimensions. The aim is to
reveal how various approaches can enhance the models’
transparency and comprehensibility. Finally, we examine
the practical implementation of explainable knowledge trac-
ing in real-world applications, such as generating diagnostic
reports. The section concludes with a critical discussion
evaluating the balance between the models’ interpretability,
accuracy, and their practical application in educational set-
tings.

3.1 The concept of explainable knowledge tracing

As mentioned in Section 2.2, machine learning models are
typically categorized as transparent or black box models
according to the complexity of the objects they are intended to
explain, based on the criteria of xAI. Transparent models are
characterized by high transparency of internal components
and self-interpretability, such as, linear/logistic regression
[98, 99], bayesian models [100–102], decision trees [103,
104], k-nearest neighbors [105–107], rule based learners
[108–110], general additivemodels [111–113], etc. For trans-
parent models, interpretability can be understood from three
perspectives: algorithmic transparency, decomposability, and
simulatability [114]. However, models such as multi-layer
neural network [115, 116] and other deep network [115, 117,
118], which have complex internal structures and difficult
operation mechanisms, are usually referred to as black box
models. XAI algorithms are capable of understanding the
architecture and layer configurations of transparent models,
but they lack the ability to comprehend the operational mech-
anisms inherent in black box models[119].

Explainable knowledge tracing model taxonomy Inspired
by the criteria for classifying model complexity in xAI
[9], we propose a novel taxonomy specifically tailored for
knowledge tracingmodels. This framework categorizesmod-
els based on their explainability and comprehensibility. We
identify models employing Markov processes and logistic
regression as “transparent models” due to their straightfor-
ward structures and the ease with which users can understand
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them. This classification is rooted in the models’ inter-
pretability and the transparency of their decision-making
processes, emphasizing the accessibility and interpretability
of how decisions are made. For example, state transitions in
Markov models and parameter settings in logistic regression
models are intuitive, making these models’ decision-making
processes easily traceable and explainable. In contrast,
knowledge tracingmodels based on deep learning, especially
those involving complex multi-layered network structures,
are considered akin to “black box” by users. The internal
mechanisms of these models are difficult to comprehend
because of their complexity and rich nonlinear charac-
teristics, obscuring the internal decision-making process.
Consequently, thesemodels and their variants are categorized
as “black-box models”. We define explainable knowledge
tracing and show its framework in Fig. 5.

Methodologies for explainable knowledge tracing In the
following section, we delve into interpretable methods for
the two types of knowledge tracing models mentioned
earlier, categorizing them into three phases: 1) Ante-hoc
interpretable methods; 2) Post-hoc interpretable methods;
and 3) Other dimensions. Ante-hoc interpretable methods
that focus on transparent models and model-intrinsic inter-
pretability, which can be achieved by simplifying themodel’s
structure or incorporating intuitive modules to enhance its
interpretability. Post-hoc interpretability methods, on the

other hand, center aroundmodel-specific andmodel-agnostic
approaches, such as using external tools or techniques to
elucidate themodel’s decision-makingprocess.Other dimen-
sions include interpretability methods that are specific to
knowledge tracing models but have not yet been widely dis-
cussed in the current xAI literature. An example would be
leveraging the associative relationships between problems,
concepts, or users within the context of knowledge tracing.
To aid readers in locating various interpretable methods, we
present a framework diagram in Section 3 in Fig. 6. Addition-
ally, all the reviewed explainable knowledge tracingmethods
are summarized in Table 6.

3.2 Stage 1: ante-hoc interpretable methods

Asmentioned in Section 2.2, ante-hoc interpretable methods
are primarily used for transparent models or model-intrinsic
interpretability [120]. These methods aim to make the model
itself capable of interpretationby training a transparentmodel
with a simple structure and strong interpretability or by build-
ing interpretable components into a complex model structure
[9, 119]. This paper mainly focuses on two types of ante-
hoc interpretable methods for xKT: transparent models and
model-intrinsic interpretability; these methods are described
in the following subsections.

Interpretable Methods

Ante-hoc interpretable methods

Teachers
Adjust teaching decision

Learners
Exercise and learning
path recommendation

Developer
Improve the model’s
interpretability

Model Evaluation

• How to evaluate the
explainable knowledge tracing
model?

• What is the good explanations
for knowledge tracing？

• From the perspective of
algorithmics or stakeholders ?

Model Selection

Transparent model
• Markov process-based

knowledge
• Logistic knowledge tracing

OR?
Black box mode

• Deep learning-based
knowledge tracing

s1

s1

s2

Transparent model

• User can intuitively
understand model
internal operation
mechanism.

Model-specific
approaches

Data Preprocessing

Target Audience

Model-agnostic
approaches

Model-intrinsic
interpretability

• Incorporating attention
mechanism and
educational psychology
theory modules.

• Radar map • Heat map

Text, visual explanations

Other dimensions methods

Post-hoc interpretable methods

• Tailoring
explanations to the
specific characteristics
of a model, and
specific to a class of
models.

• Aiming to generate
explanations for
predictions without
relying on a specific
model's internal
structure, ensuring
versatility.

Fig. 5 The framework of explainable knowledge tracing(xKT)
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Fig. 6 The framework of explainability techniques for the knowledge tracing model

3.2.1 Category 1: transparent models

Based on the classification criteria in Section 3.1, knowl-
edge tracing models that use theMarkov process and logistic
regression are considered knowledge tracing transparent
models due to their easy-to-understand internal structure
and operational process. The following sections elaborate
on how the knowledge tracing transparent model achieves
interpretability.

Bayesian knowledge tracing (BKT) BKT is a probabilistic
model grounded in the Markov process, predicting students’
skill mastery by updating beliefs based on performance.
Although not as performant as deep knowledge tracing mod-
els, BKT’s use of the HMM framework ensures a satisfactory
and comprehensible explanation of the knowledge tracing.
Some extended models of BKT are personalized by incorpo-
rating individual student characteristics. For example, Pardos
et al. [121] set different initial probabilities for different

students to achieve partial personalization. However, dif-
ferentiating the initial probabilities only partially achieves
personalization, and Lee et al. [122] used a separate set of
personalization parameters for each student to adequately
model interindividual differences. Although the personal-
ized parameters are good for conferring variability across
individuals, they do not consider the influence of knowledge
concepts. Hawkins et al. [123] proposed BKT-ST to calcu-
late the similarity between current knowledge concepts and
those learned previously, enhancing the model’s capacity to
represent interconnected linkages across concepts. In addi-
tion,Wang et al. [124] proposed the use ofmultigrained-BKT
and historical-BKT to model the relationships between dif-
ferent knowledge components (KCs). Moreover, Sun et al.
[125] used a genetic algorithm (GA) to optimize the model
to solve the exponential explosion problem when tracing
multiple concepts simultaneously. Moreover, Moreover, the
interpretable knowledge tracing (IKT) model proposed by
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Minn et al. [40], which is distinct in its use of tree-augmented
naive Bayes and focuses on skill mastery, learning trans-
fer, and problem difficulty, offers greater interpretability and
adaptability in student performance prediction. Beyond basic
parameters and knowledge concepts, the BKT model is also
increasingly taking into account students’ emotions and addi-
tional behavioral aspects. For examples, Spaulding et al.
[126] introduced the concept of affective BKT, integrating
students’ emotional states into the model. Furthermore, to
accurately capture how students’ memory retention changes
over time, Nedungadi et al. [127] developed the PC-BKT
model. This adaptation incorporates a temporal decay func-
tion to model the process of forgetting, offering a more
nuanced understanding of students’ learning and memory
retention behaviors. The HMM describes the probabilistic
relationship between observable and hidden variables, and
the probabilistic relationship varies over time. In Bayesian
knowledge tracing, the model estimates students’ learning
state by observing the results of students’ responses to
questions related to knowledge concepts. The state trans-
fer probability calculation process and the decision process
are transparent, and the change process of the model can be
effectively observed through the state transfer diagram, as
shown in Fig. 7. Here, P(M) represents the probability of
mastery, indicating a student’s current understanding of the
skill, P(T ) represents the probability of transition, which
is the rate at which a student transitions from nonmastery
to mastery, P(G) is the probability of guessing correctly,
accounting for luckyguesses, and P(S) refers to the probabil-
ity of slipping, where a mastered skill is incorrectly applied.
In BKT, knowledge mastery is updated along with the learn-
ing parameters. When the probability of students mastering
the relevant knowledge concept in the initial knowledge state
is greater than 0.95 [128], students have mastered the knowl-
edge concept.

In summary, from an interpretable perspective, the Bayesian
knowledge tracing model has good transparency in the com-
putational process as a purely probabilisticmodel. Observing
different state transfers of BKT can provide a basis for

modeling decisions for students and teachers. From the
model perspective, on the one hand, Bayesian knowledge
tracingmodels do not account for the differences in the initial
knowledge levels of different students and lack an assessment
of the difficulty of the questions.Althoughmanymodels have
been extended based on BKT, they still cannot be applied to
knowledge tracing scenarios with large-scale data. On the
other hand, these models assume that students do not forget
the knowledge they have mastered, which is not consistent
with actual cognitive characteristics. In addition, usingbinary
groups to represent recent knowledge states does not match
the real cognitive state situation. It is difficult to adequately
predict the relationship between each exercise and specific
knowledge concepts due to the ambiguous mapping between
hidden states and exercises.

Knowledge tracing based on item response theory (IRT) Item
response theory originates from the field of psychometrics
and assumes that an underlying trait represents each candi-
date’s ability and can be observed through their response to
items. The twomodels underlying the IRTmodel are the nor-
mal ogivemodel and the logisticmodel.However, the logistic
regression model is the most common in practical applica-
tions [129]. The IRT model is based on four assumptions: 1)
monotonicity (the probability of a correct response increases
as the level of the trait increases). 2) one-dimensionality (it is
assumed that a dominant underlying trait is being measured).
3) local independence (responses to separate items in a given
test are independent of each other at a given level of ability).
4) invariance (it is assumed that students’ abilities remain
constant over time).

Here, θi is defined as the individual ability parameter of
the i − th student, a j is defined as the discrimination param-
eter of question j , b j is defined as the difficulty parameter
of question j , and c j is defined as the guessing parameter
of question j . With one-parameter IRT, it is possible to pro-
vide students with interpretable parameters in terms of two
dimensions, personal ability and difficulty, as shown inFig. 8.
A two-parameter IRT model uses two parameters (difficulty

Fig. 7 State transitions for
Bayesian knowledge tracing
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Fig. 8 Parameters in item response theory

and discrimination) to predict the probability of a success-
ful response. Therefore, the discrimination parameter can
vary between items and be plotted with different slopes, thus
eliminating the explanatory information. A three-parameter
IRT model adds a guessing parameter to the two-parameter
model. The items answered by guessing indicate that the
student’s ability is less than the difficulty of the question
to which he or she is responding. The three-parameter IRT
model can provide explanatory information about guessing
behavior.

In IRT, the greater the difficulty of the item is, the greater
the corresponding competencies needed by the student. By
explicitly defining parameters such as item difficulty and
student competencies, the model is transparent in its com-
putational process and has good interpretability. However,
the static IRT model assumes that students’ abilities remain
constant over time, which is particularly unsuitable for long-
term knowledge tracing.

Knowledge tracing based on factor analysis model Factor
analysis is another critical approach for assessing learners’
knowledge mastery. Cen et al. [30] proposed learning factor
analysis (LFA), a theory whose primary purpose is to find
a more valid cognitive model from students’ learning data.
Moreover, LFAs inherit the Q matrix used in psychometrics

to assess cognition and extend the theory of learning curve
analysis, as shown in Fig. 9.

LFA allows researchers to evaluate different representa-
tions of knowledge concepts by performing a heuristic search
of the cognitive model space. Based on LFA theory, Cen et
al. proposed the additive factor model (AFM) [130] and per-
formance factor analysis (PFA) [31]. TheAFM is a particular
case of PFA and is equivalent when γk equals ρk . The AFM
explains how the difficulty of a student’s knowledge points
and the number of attempts to solve the problem affect the
student’s performance, while PFA explains the student’s per-
formance in terms of the difficulty of the knowledge points,
the number of successes, and the number of failures.

Large-scale factor analysis models have been further
developed based on earlier factor analysis models. Using
a factor decomposition approach, Vie et al. [32] proposed
knowledge tracing machines (KTMs). KTMs use a sparse
set of weights for all features to model the learner’s correct
answer probability. The DASH (difficulty, ability, student
interaction history) model is used for memory forgetting and
factor analysis [131]. TheDAS3H is a newermodel that com-
bines IRT and PFA and extends the DASH model by using a
time window-based counting function to calculate character-
istic factors [131, 132]. With the DAS3H model, the factor
analysis method can explain student changes over a contin-
uous time window, thus extending the scope of application
of the factor analysis method. Gervet et al. [133] proposed
Best-LR based on DAS3H. Unlike DAS3H, Best-LR does
not use a window but directly uses the number of successes
or failures as an additivity factor. The factors that Best-LR
can explain are similar to those that can explain DAS3H.
The performance of Best-LR is better than that of DAS3H
because Best-LR does not need to calculate window features.

In summary, logistic regression models can explain two
main types of features: 1) coded embeddings represent-
ing questions and KCs and 2) counting-based features. In
Table 4, we compare the factors used by factor analysis mod-
els. Counting features summarize the history of students’

Fig. 9 Learning factor analysis
approach
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Table 4 Overview of Factors
Explained by Factor Analysis
Models

Model Users Items Skills Wins Fails Attempts KC(Time
Window)

Items(Time
Window)

IRT � �
MIRT � �
AFM � �
PFA � � �
KTM

DASH � � � � �
DAS3H � � � � � �
Best-LR � � � � �

interactions with the system, and counting methods vary
among differentmodels, with some even introducing the con-
cept of time windows.

3.2.2 Category 2: model-intrinsic interpretability

Due to the invisibility of the internal structure and opera-
tionmechanismof the neural networkmodel,model-intrinsic
interpretability can only be realized by adding an inter-
pretable module. Deep neural networks F(·) have large
network layers and large parameter spaces. An end-to-end
process is used to obtain the output prediction ŷ from the
input sample x . This process is similar to that of a black box.
Therefore, researchers have attempted to embed a simple
or an easy-to-interpret module inside the model to achieve
model-intrinsic interpretability, thus resembling an inter-
pretable model from the outside to provide explanations for
the audience, as shown in Fig. 10. For instance, attention
mechanisms can provide explanations by visualizing atten-
tion weights. As a result, attention mechanisms have become
common intrinsic explainable modules in neural networks
and are widely used in computer vision [134, 135], sentiment
analysis [136, 137], recommendation systems [138, 139], and
other fields.

In xAI, this kind of interpretation method is essentially
explained by following strict axioms, rule-based final deci-
sions, granular interpretations of decisions, etc. [119]. It is
worth noting that this method can only be used for a spe-
cific model, which leads to poor transferability. In the xKT
model, as shown in Table 5, researchers have attempted to
improve the model interpretability by introducing attention
mechanisms, educational psychology, and other theories as

interpretable modules. These model-intrinsic interpretabil-
ity methods aim to make the model more transparent and
understandable to stakeholders while maintaining good per-
formance. In the following section, we elaborate on these two
methods of model-intrinsic interpretability.

Integrating attentionmechanismmodules The self-attentive
knowledge tracing (SAKT) model [35] identifies concepts
related to a given concept from historical student interac-
tion data and predicts learners’ performance in the next
exercise by considering related exercises in past interac-
tions. This process involves sparse data. To address the
problem that the attention layer is too shallow to recognize
the complex relationships between exercises and responses,
separated self-attentive neural knowledge tracing (SAINT)
[154], which is based on transformers and stacked two mul-
tihead attention layers on the decoder, was proposed to
more effectively model the complex relationships between
exercises and answers. The above work proved that the intro-
duction of an attention mechanism into knowledge tracing
greatly improves the performance of the model. Further-
more, several researchers have studied the construction of
an attention mechanism for the knowledge tracing model as
an interpretable module to improve the model’s explainabil-
ity.

For example, Liu et al. [39] proposed explainable exercise-
aware knowledge tracing (EKT), which utilizes a novel
attention mechanism to deeply capture the focusing infor-
mation of students on historical exercises. This technique
can track students’ knowledge states on multiple concepts
and visualize knowledge acquisition tracing and student per-
formance prediction to ensure the interpretability of the

Fig. 10 The framework of the
model-intrinsic interpretability
method
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Table 5 Model-intrinsic
interpretability for knowledge
tracing

Model-intrinsic module References

Attention mechanism [36, 38, 39, 140–143]

Educational psychology and other theories Item response theory (IRT) [144–147]

Multidimensional item response theory (MIRT) [44]

Constructive learning theory [148, 149]

Learning curve theory and forgetting curve theory [150]

Finite state automaton (FSA) [151]

Classical test theory (CTT) [152]

Monotonicity theory [153]

model. Context-aware attentive knowledge tracing (AKT)
[36] combines interpretable components into a novel mono-
tonic attention mechanism and uses the Rasch model to
regularize concepts and exercises; this approach has been
proven to have excellent interpretability via experiments.
Moreover, Zhao et al. [140] proposed a novel personalized
knowledge tracing framework with an attention mechanism
that uses learner attributes to explain the prediction of mas-
tery. The relation-aware self-attention model for knowledge
tracing (RKT) [38] uses interpretable attention weights to
help visualize the relationships between interactions and
temporal patterns in the human learning process. Similarly,
Zhang et al. [141] introduced a new vector to capture addi-
tional information and used attention weights to analyze
the importance of input features, making it easier for read-
ers to understand the predicted results. Recently, Li et al.
[142] regarded the attention mechanism as an effective inter-
pretability module for constructing a new knowledge tracing
model, effectively improving the interpretability and predic-
tive ability of the model. Yue et al. [155] , based on ability
attributes and an attentionmechanism, provided explanations
through an inference path. Zu et al. introduced CAKT[156],
an innovative model that merges contrastive learning and
attention networks to enable interpretable knowledge trac-
ing.

Attentionmechanisms, through visualized attentionweig-
hts, explain aspects of decision-making in models. However,
the interpretability of these tools is contingent upon the com-
plexity of themodel and the expertise of the interpreter.While
elucidating certain decisions in simpler models, attention
weights may become less transparent inmore complex archi-
tectures, where multiple layers and nonlinear interactions
obscure the interpretability of the information. Therefore,
despite their utility, attention mechanisms should be inte-
grated with complementary techniques for more holistic
interpretability in sophisticated deep learning models.

Integratingeducational psychologyandother theories Item
response theory [157] is a modern psychometric theory in
which “items” refer to the questions in students’ papers

and “item responses” refer to students’ answers to specific
questions. As the parameters of IRT are interpretable, many
scholars have combined IRT with deep learning meth-
ods, which have powerful feature extraction capabilities
for enhancing interpretability. Deep-IRT [144] integrates
dynamic key-value memory networks (DKVMNs) with IRT
for knowledge training. The DKVMN captures learners’ tra-
jectories, inferring their abilities and item difficulties via
neural networks, which are subsequently utilized in IRT to
predict answer correctness. This model combines the predic-
tive strength of the DKVMN model with the interpretability
of IRT, enhancing both the performance and insight into
learner and item profiles.

Even though IRT can utilize predefined interpretable
parameters to describe students’ behavior, students’ ability
to solve problems is not limited; therefore, one-dimensional
IRT parameters cannot be used to effectively explain stu-
dents’ complex behaviors in a real-world scenario. To address
this issue, enhanced deep multidimensional item response
theory (TC-MIRT) [44] integrates the parameters of a multi-
dimensional item response theory into an improved recurrent
neural network, which enables the model to predict stu-
dents’ states and generate interpretable parameters in each
specific knowledge field. Inspired by the powerful inter-
pretability of IRTs, many studies have integrated them into
model frameworks to improve the model reliability in recent
years. For example, knowledge interaction-enhanced knowl-
edge tracing (KIKT) [145] uses the IRT framework to
simulate learners’ performance and obtains an interpretable
relationship between learners’ proficiency and project char-
acteristics. Geoffrey Converse et al. [146] improved the
model interpretability by transforming the representation of
high-dimensional student ability from a deep learning model
to an interpretable IRT representation at each time step; lev-
eled attentive knowledge tracing (LANA) [147] uses the
interpretable Rasch model to cluster students’ ability lev-
els, thus using leveled learning to assign different encoders
to different groups of students. Recently, Chen et al. [45]
developed QIKT, a question-centric KT model, improved
knowledge tracing interpretability using question-centric
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representations and an interpretable item response theory
layer.

In addition, constructivist learning theory [158] is a clas-
sical cognitive theory that emphasizes knowledge mastery
differences as the result of knowledge internalization. Based
on this theory, the ability boosted knowledge tracing (ABKT)
model [148] utilizes continuous matrix factorization to sim-
ulate the knowledge internalization process for enhancing
the model’s interpretability. PKT [149] was designed based
on constructivist learning and item response theories and fea-
tures interpretable and educationallymeaningful parameters.
The forgetting curve theory [159] indicates that a decrease in
students’ memory during learning usually reduces their pro-
ficiency in knowledge concepts. The learning curve [160]
regards knowledge acquisition as a mathematical expres-
sion in the process of human learning; that is, students can
acquire knowledge after each practice. According to the
above two types of pedagogical research, Zhang et al. [150]
constructed learning and forgetting factors at the learner level
as additional factors to better trace and explain changes in
learners’ knowledge levels.Moreover, some researchers have
attempted to integrate a mathematical compression model
into the KT model to enhance the interpretability of the
model. For example, Wang et al. [161] utilized finite state
automation (FSA) to interpret the hidden state transition
of DKT when receiving inputs. In addition, MonaCoBERT
[152] uses a classical test theory-based (CTT-based) embed-
ding strategy to consider the difficulty of an exercise to
improve the performance and interpretability of the model.
Recently, the counterfactual monotonic knowledge tracing
(CMKT) [153] method enhances interpretability by integrat-
ing counterfactual reasoning with the emonotonicity theory
in knowledge acquisition, demonstrating superior perfor-
mance across real-world datasets.

Incorporating educational psychology theories into mod-
els offers interpretability through psychological frameworks
and parameters. However, the efficacy of these methods
in complex real-world educational contexts is limited and
often constrained by the specificity and scope of the under-
lying theories. While providing insights into controlled
scenarios, these approaches may struggle to encapsulate
the multifaceted and dynamic nature of learning processes.
Consequently, their application necessitates a nuanced and
broadened perspective, blending theoretical insights with

empirical data analysis to enhance the overall interpretability
of the model in diverse educational environments.

3.3 Stage 2: post-hoc interpretable methods

Post-hoc interpretability techniques are applied to pretrained
machine learningmodels, especially those considered “black
box” models, to explain their decisions, as shown in Fig. 11.
Unlike ante-hoc methods, which are built into the model
during development for inherent interpretability, post-hoc
methods are employed after model creation, mainly to clar-
ify the predictions [162, 163]. However, some post-hoc
methods, such as knowledge distillation [164, 165], rule
extraction [166], and activation maximization [167], extend
beyond explaining outputs; they also attempt to uncover
the model’s internal mechanisms. In this paper, we delve
into post-hoc interpretable methods for knowledge trac-
ing from two angles: model-specific and model-agnostic
methods. Model-specific methods are tailored to particular
types of knowledge tracing models, reflecting their unique
architectures and learning algorithms. Conversely, model-
agnostic methods offer broader applicability, allowing for
interpretability across various knowledge tracing models,
regardless of their specific designs. This distinction is crucial
for developing a comprehensive understanding of how differ-
ent interpretabilitymethods canbe leveraged to demystify the
predictions of knowledge tracing models, thereby enhancing
their utility and trustworthiness in educational applications.

3.3.1 Category 1: model-specific

Most model-specific methods focus on the interpretabil-
ity of deep learning, mainly for a certain type of model.
It is important to note that model-specific approaches are
not necessarily model-based but specific to a class of mod-
els. At present, model-specific methods are mainly used to
explain the following two categories of models: 1) ensemble-
based models [168–170]; and 2) neural networks [171, 172].
Knowledge tracing based on deep learning is a black box that
is difficult to understand due to the large parameter space
inside the neural network. At present, researchers generally
use visualization methods to explain this type of neural net-
work in models.

Fig. 11 The framework of the
model-intrinsic interpretability
method
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Layer-wise relevance backpropagation (LRP) The LRP tech-
nique was proposed by Bach et al. [59] to calculate the
correlation scores of single features in the input data by
decomposing the output prediction of the deep neural net-
work. It uses a specially designed set of propagation rules
to operate a neural network by backpropagating predictions,
where the inputs can be images, videos, or texts [59, 173].
In recurrent neural networks (RNNs), correlations are propa-
gated to hidden states and memory units. Several researchers
have applied theLRPmethod to the knowledge tracingmodel
to enhance its interpretability. For example, Lu et al. [174]
proposed solving the interpretability of deepDLKTby adopt-
ing the LRP method, which backpropagates the relevance
from the output layer of the model to its input layer to
explain the RNN-based DLKTmodel.Wang et al.[175] stud-
ied whether the same post hoc interpretable method could be
applied to the extensive dataset EdNet and achieved partic-
ular effectiveness. However, its effectiveness decreases with
increasing learner size and learner practice sequence. Sub-
sequently, Lu et al. [176] used the classical LRP method to
interpret the output forecast variables of the DLKT model
from the ready-made inputs of the DLKT model, which cap-
tured skill-level semantic information. The model output
is progressively mapped to the input layer using a back-
ward propagation mechanism, and the interpretation method
assigns relevant values to each input sky-answer pair.

The LRP provides valuable insights into neural network-
based KT models by mapping predictions back to input
features. However, its reliance on correlation for attribution
measurements raises concerns about fidelity, as it may be
influenced by spurious correlations. This limitation, along
with scalability issues in handling large datasets and com-
plex learner sequences, as indicated in [175], questions its
applicability and relevance in diverse educational settings.
The effectiveness of this method in treating KT thus requires
careful consideration of these potential drawbacks.

Causal inference Causal inference is a method for analyz-
ing causal relationships in observational data, attempting
to determine whether different treatments (such as different
strategies or methods in an experiment) lead to different out-
comes [177, 178]. The focus is on distinguishing true causal
effects from mere correlations, especially when dealing with
confounding variables [179]. Causal inference enhances the
transparency and interpretability of AI models by clarifying
the “why” behind AI decisions and distinguishing between
direct causal relationships and spurious associations. Zhu
et al. [47] focused on applying causal inference to the field
of knowledge tracing. By adjusting confounding variables
within a causal inference framework, they aimed to enhance
the prediction accuracy and stability of knowledge tracing
models. This approach takes into account key factors, such
as confounding variables, to improve the models’ ability

to predict students’ knowledge states accurately. Further-
more, the temporal and causal-enhanced knowledge tracing
(TCKT) model [180] integrates causal self-attention with
temporal dynamics. This integration not only enhances pre-
diction accuracy and interpretability in educational settings
but also effectively mitigates dataset bias by employing
causal inference to model the student learning process more
accurately.

Causal inference, which is critical in distinguishing
between correlation and causation, is invaluable in KT for
analyzing the impact of educational interventions. The chal-
lenges, as outlined in [177], lie in the need for robust
statistical frameworks and the management of confounding
variables,which can be daunting in practical educational con-
texts. Its application inKT requires a careful balance between
theoretical robustness and practical feasibility.

Visualization A classic approach to interpret black boxmod-
els is visualization, which provides intuitive explanations
through analysis of the model’s training process. Based on
their previous work [181], Ding et al. [182] tried to open
the “box” of the deep knowledge tracing model. First, they
used the larger dataset EdNet to visually analyze the behav-
ior of the DKTmodel in high-dimensional space, tracked the
changes in activation over time, and analyzed the influence
of each skill relative to other skills, which solved the problem
that interpretation methods were not intuitive.

Visualization techniques provide an intuitive means of
interpreting complex KT models. However, they necessitate
a high level of expertise in both the model’s workings and
the data represented. The risk here, particularly with high-
dimensional data, is the potential for oversimplification or
misinterpretation of the model’s dynamics, leading to incor-
rect conclusions about the learning process.

Ensembling approaches Several researchers have attempted
to use ensemble approaches to improve the interpretability
of knowledge tracing models on big data. For example, Tirth
Shah et al. [183] used a combination of 22 models to pre-
dict whether students can answer given questions correctly
and discovered that an ensembling approach can improve
the prediction performance and interpretability of knowledge
tracing tasks. EnKT [184] is based onBKTandDKTand rep-
resents student concepts and student questions using learning
and performance parameters, respectively, to improve the
interpretability of the model.

Ensembling approaches combine multiple models to
enhance both predictive accuracy and interpretability in KT.
However, the increased complexity of these methods can
obscure the contributions of individual models within the
ensemble. This complexity poses a significant challenge in
KT, where understanding the specific influence of different
factors on learning outcomes is crucial (Table 6).
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Table 6 A summary of different types of explainable knowledge tracing models

Models Year Taxonomy Interpretable Methods
Transparent Black-box Ante-hoc Post-hoc Other
Model model Self-

explanatory
Model-
Intrinsic

Model-
Specfic

Model-
Agnostic

Dimensions

BKT [28] 1994 � �
Pardos et al. [121] 2010 � �
Lee et al. [122] 2012 � �
BKT-ST [123] 2014 � �
Wang et al. [124] 2016 � �
Sun et al. [125] 2022 � �
IKT [40] 2022 �
Affective BKT
[126]

2015 � �

PC-BKT [127] 2014 � �
LFA [30] 2006 � �
AFM [130] 2008 � �
PFA [31] 2009 � �
KTM [32] 2019 � �
DASH [131] 2014 � �
DAS3H [132] 2019 � �
Best-LR [133] 2020 � �
EKT [39] 2019 � �
AKT [36] 2020 � �
RKT [38] 2020 � �
Zhao et al. [140] 2020 � �
Zhang et al. [141] 2021 � �
Li et al. [142] 2022 � �
Yue et al. [155] 2023 � �
CAKT [156] 2023 � �
MonaCoBERT
[152]

2022 � �

CMKT [153] 2023 � �
deep-IRT [144] 2019 � �
TC-MIRT [44] 2011 � �
KIKT [145] 2020 � �
Geoffrey Converse
et al. [146]

2021 � �

LANA [147] 2021 � �
QIKT [45] 2023 � �
ABKT [148] 2022 � �
PKT[149] 2023 � �
Zhang et al. [150] 2021 � �
Wang et al. [161] 2023 � �
EAKT [185] 2022 � �
Zhu et al. [151] 2022 � �
Ding et al. [181] 2019 � �
Ding et al. [182] 2021 � �
Zhu et al.[47] 2023 � �
TCKT [180] 2024 � �
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Table 6 continued

Models Year Taxonomy Interpretable Methods
Transparent Black-box Ante-hoc Post-hoc Other
Model model Self-

explanatory
Model-
Intrinsic

Model-
Specfic

Model-
Agnostic

Dimensions

Tirth Shah et al. [183] 2020 � �
EnKT [184] 2022 � �
Lu et al. [174] 2020 � � �
Valero et al. [186] 2023 � �
Wang et al. [175] 2021 � � �
Lu et al. [176] 2022 � � �
Varun Mandalapu
et al. [187]

2021 � �

Wang et al. [188] 2022 � �
GCE [46] 2023 � �
SPDKT [189] 2021 � �
CoKT [190] 2021 � �
Lee et al. [191] 2019 � �
HGKT [43] 2022 � �
GKT [37] 2019 � �
SKT [192] 2020 � �
Zhao et al. [193] 2022 � �
JKT [194] 2021 � �

3.3.2 Category 2: model-agnostic

Model-agnostic techniques separate explanations from model
outputs and are applicable to any machine learning model
[162]. It only acts on the input and output of the neural
network, providing explanations by perturbing the input or
simplifying the model. Because model-agnostic techniques
are not limited to a specific model, most researchers cur-
rently prefer model-agnostic approaches over model-specific
approaches.

Local interpretable model-agnostic explanations (LIME) The
LIMEwas proposed byRibeiro et al. [64]. Thismethod trains
local surrogate models to explain a single prediction a global
black-box model gives. LIME partially replaces complex
models with simpler models to provide local explanations.
Specifically, since the perturbed data will affect the model’s
output, LIME trains a local interpretable model to learn the
mapping relationship between the perturbed data and the
model’s output and uses the similarity between the perturbed
input and the original input as the weight. Finally, the essen-
tial K features are selected from the local interpretable model
for interpretation. This approach can provide a very effec-
tive local approximation to the black box model. In xKT,
Varun Mandalapu et al. [187] utilized LIME to understand
the impact of various features on best-performingmodel pre-
dictions.

LIME provides microlevel insights into specific predic-
tions of KT models by training local interpretable surrogate
models. Its major strength lies in revealing the influence of
particular features in specific instances. However, LIME’s
focus on local explanations may not capture the model’s
global behavior, particularly in KT, where diverse learning
paths can significantly influence model decisions. Addition-
ally, the dependence of LIME on perturbation strategies and
the choice of local models might affect the consistency and
accuracy of its interpretations.

Deep shapley additive explanations (Deep SHAP) By com-
biningDeepLIFT [195]with Shapley values [196], Lundberg
and Lee [65] proposed a fast method to approximate Shapley
values for CNNs called Deep SHAP. Deep SHAP decom-
poses the prediction of the deep learning model into the sum
of feature contributions through backpropagation and obtains
the reference specific contribution of each feature to the pre-
diction through the backpropagation prediction difference.
Several studies [197] have concentrated on using the DKT
model to predict test scores based on skill mastery and then
assessed the influence of each skill on the predicted score
using SHAP analysis. Inspired by this idea, Valero-Lea et al.
[186] aimed to explain learners’ skill mastery by analyzing
past interactions using a SHAP-like method to determine
the importance of these interactions. Wang et al. [188] pro-
posed a four-step procedure to interpret theDLKTmodel and
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obtained effective explicable results. The four-step procedure
is as follows: 1) Given a sample x to be interpreted, refer-
ence samples are selected, and predictions are made about
the last questions; 2) the difference between each reference
sample and sample x is calculated; 3) the prediction is then
backpropagated from the output layer to the input layer to
calculate the reference-specific feature contribution between
each reference sample and the interpreted sample; and 4)
the contribution of each question-answer in sample x to the
prediction of the DLKT model is obtained.

Deep SHAP, which combines DeepLIFT with Shapley
values, elucidates feature contributions to predictions in
deep learning models. KT helps us understand the relative
importance of various features, such as prior performance
or interaction frequencies. While effective at revealing indi-
vidual feature impacts, Deep SHAP may struggle with
high-dimensional feature spaces and overlook complex inter-
feature interactions, which are crucial in KT with diverse
learning trajectories.

Causal explanation(CE) Li et al. [46] addressed the explain-
ability issue of DLKT models by proposing a genetic causal
explainer (GCE) based on genetic algorithms (GAs). The
GCE established a causal framework and a specialized
coding system, effectively resolving the issues of spurious
correlations caused by reliance on gradients or attention
scores, thereby enhancing the accuracy and readability of
explanations. Additionally, the GCE is a post hoc explana-
tion method that can be applied to various DLKT models
without interfering with model training, offering a flexible
and effective means of explanation.

GCE based on genetic algorithms addresses explainability
in DLKT models by establishing a causal framework. While
GCE offers a novel approach to understanding deep causal
relationships in KT, establishing causal connections requires
precise data modeling and hypothesis validation. The com-
plexity and computational demands of GCE, particularly for
large datasets, pose significant challenges.

3.4 Stage 3: other dimensions

Beyond the mainstream ante-hoc and post-hoc methods,
there are interpretatable approaches specific to the knowl-
edge tracing domain, yet underrepresented in current xAI
literature. These approaches exploit unique data features in
KT, such as interconnected relationships among questions,
concepts, or users. Upcoming sectionswill provide a detailed
exploration of these approaches and their role in enhancing
interpretability.

3.4.1 Category 1: output format

Visual explanations To verify the interpretability of the pro-
posed model, many researchers use radar charts or heat maps
to provide readers with visual explanations. In the following,
several representative works will be introduced. Self-paced
deep knowledge tracing (SPDKT) [189] reflects the difficulty
of the problem by assigning different weights to the problem,
visualizing the difficulty of the problem, and improving the
interpretability of themodel. Similarly, collaborative embed-
ding method for Knowledge Tracing (CoKT) [190] provided
an interpretable question embedding by visualizing the dis-
tance between question embeddings that share the same
concepts and those that do not. Lee et al. [191] proposed a
knowledge query network (KQN) model, which uses the dot
product between the knowledge state vector and skill vector
to define knowledge interaction and uses a neural network
to encode students’ responses and skills into vectors of the
same dimension. Moreover, the KQN can query students’
knowledge of different skills and subsequently enhance the
interpretability of the model by visualizing the interaction
between two types of vectors.

Visual explanations enhance surface-level interpretability
in KT but often fail to delve into the internal mechanisms
of models. The explanatory power of these models heavily
relies on the quality of the data representation; inaccu-
rate representations may lead to misleading interpretations.
Moreover, complex visual outputs, such as relationships in
high-dimensional spaces, can be challenging for general
users to understand, limiting their practical effectiveness.
Therefore, these methods require further refinement and
development to provide more in-depth and thorough expla-
nations.

3.4.2 Category 2: data attribute

Interactionbetween exercises and concepts. Several resear-
chers have shown that the relationship between exercises
and concepts may be structured into a graph by analyz-
ing learners’ learning data. For example, one exercise may
involve multiple concepts, and one concept may also corre-
spond to multiple exercises. In addition, two relationships
exist among concepts, prerequisite and similarity, as shown
in Fig. 12. The prerequisite is that the mastery of concept y
requires the mastery of concept x , for example, by adding
before multiplying; the similarity relationship means that
knowledge y and knowledge x belong to the same cate-
gory, such as addition. Some studies show that incorporating
this graph structure into the knowledge tracing model as
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Fig. 12 (a) Relationships
between the exercises and the
concepts. (b) Relationships
between concepts: the solid line
represents the prerequisite
relationship, and the dashed line
represents the similarity
relationship

a relation induction deviation can enhance interpretability
in the prediction process. Generally, there are exercises-to-
exercises, concepts-to-concepts, exercises-to-concepts, and
other potential relationships in the graph structure con-
structed from learner learning data. Next, this subsection
describes in detail the works that have been done to increase
the interpretability of the model by using the underlying
graph structure in the data.

At the level of exercise-to-exercise relationships, hierar-
chical graph knowledge tracing (HGKT) [43] constructs a
hierarchical exercise graph according to the latent hierarchi-
cal relationships (direct relationships and indirect relation-
ships) between exercises and introduces a problem schema
to explore the dependencies of exercise learning, which
enhances the interpretability of knowledge tracing. On the
level of concept-to-concept relationships, the graph-based
knowledge tracing model (GKT) [37] synchronously learns
the latent relationships between concepts in the prediction
process. The model updates the knowledge state related to
the current exercises each time, thus realizing interpretabil-
ity at the concept level. Educational entities emphasize the
significance of knowledge structure. Structure-based knowl-
edge tracing (SKT) [192] utilizes two different propagation
models to track the influence of prerequisites or similarity
relationships between concepts and has been used in many
experiments to prove interpretability. This work visually
demonstrated the interpretability of themodels in themanner
described in 3.1, such as through heatmaps and radar maps.
On the level of exercise-to-concept relationships, Zhao et al.
[193] used a graph attention network to learn the underlying
graph structure between concepts in the answer record and
input information from themodel containing the relationship
information between the exercises and the concept, which
enhances the interpretability of the model. To dig deeper into
the relationship between exercise-to-exercise and concept-
to-concept, a joint graph convolutional network-based deep
knowledge tracing (JKT) [194] frameworkwas used tomodel
the multidimensional relationships of the above two fac-
tors into a graph and fuse them with “exercise-to-concept”
relationships. The model connects exercises under cross-
concepts and helps capture high-level semantic information,
which increases the interpretability of the model.

Graph-based approaches in knowledge tracing offer intri-
cate insights into the relationships among exercises, con-
cepts, and hierarchical interdependencies. While these meth-
ods enhance interpretability by mapping complex educa-
tional theories onto graph structures, they also present
challenges in terms of complexity and accessibility. Their
reliance on sophisticated graph representations and computa-
tional models may limit usability for nontechnical users such
as teachers and students, hindering their practical application
in diverse educational settings. Moreover, the assumptions
inherent in these graph-based models about learning pro-
cesses and relationships might not fully align with the
dynamic and varied nature of real-world learning, raising
questions about their generalizability and effectiveness.

3.5 Explainable knowledge tracing: application

In this section, we explore the practical application of xKT
in educational settings. Our focus is on its role in generating
diagnostic reports, personalized learning, resource recom-
mendations, and knowledge structure discovery. This section
examines how xKT algorithms are used to track and predict
learners’ knowledge states, enabling the creation of dynamic,
personalized educational pathways. We discuss the balance
between algorithmic complexity and the need for clear, inter-
pretable results in educational settings.

Knowledge tracing in diagnostic reports and visualization In
the realm of educational technology, knowledge tracing
primarily manifests in the generation and visualization of
learning diagnostic reports. Algorithms such as BKT and
DLKT have been pivotal in this regard. BKT utilizes proba-
bilisticmodeling to continually update a student’s knowledge
state, adjusting the likelihood of concept mastery after each
educational interaction. DLKT, leveraging neural network
architectures, excels in capturing complex learning patterns,
offering nuanced insights into student performance. Despite
its interpretability, BKT sometimes struggles with complex
learning scenarios, whereas DLKT, though proficient at deci-
phering intricate behaviors, compromises clarity for the sake
of complexity.

To enhance the interpretability of diagnostic reports, mod-
els such as KSGKT [198] integrate knowledge structures
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with graph representations, employing attention mecha-
nisms to accurately predict learner performance. HGKT
[43] uses a hierarchical graph neural network to analyze
learner interactions, enabling detailed categorization of exer-
cises for a deeper understanding of learner knowledge and
problem-solving skills. Both models aim to provide granu-
lar diagnostic reports to support personalized learning paths.
Additionally, visual explanations, such as intuitive graphs
and heatmaps [189], significantly augment the interpretabil-
ity of KT algorithm outputs, transforming complex data into
actionable insights for tailored educational strategies.

Knowledge tracing in personalized learning and resource
recommendation The field of personalized learning and
resource recommendation has greatly benefited fromadvanc-
ements in knowledge tracing algorithms. These algorithms
are adept at tailoring learning pathways and recommending
appropriate learning resources based on a student’s cur-
rent state of knowledge and learning preferences [199]. The
introduction of deep learning technologies, such as DKT,
has further enhanced the precision and personalization of
these recommendations. However, one limitation is the often
reduced explainability of these sophisticated models, which
canmake it challenging for educators to understand the ratio-
nale behind specific recommendations.

Several studies have made notable efforts to enhance the
accuracy and interpretability of personalized recommenda-
tions. The integration of concept tags with the DKVMN
model, as seen in [200], marks a significant step in improving
exercise recommendations by accurately tracing students’
knowledge states. Building upon this, Zhao et al. [201]
introduce attention mechanisms and learner attributes to
refine mastery predictions, yielding more personalized and
interpretable activity recommendations. Adopting a dynamic
approach, Cai et al. [202] combined reinforcement learn-
ing with knowledge tracing, adapting learning paths in real
time to align with the learner’s evolving understanding.
Similarly, the ER-KTCP [203] innovatively merges knowl-
edge state tracking with concept prerequisites for exercise
selection, demonstrating marked improvements in student
performance. Furthermore, Wang et al. [204] focused on
small private online courses (SPOCs), employing learn-
ing behavior dashboards and a modified DKVMN model
to emphasize student engagement and concept mastery in
a specific educational setting. Collectively, these studies
contribute to a more nuanced understanding of data-driven
models in educational technology, paving the way for adap-
tive, personalized learning experiences.

Knowledge tracing in knowledge structure discovery In
knowledge structure discovery, knowledge tracing algorith-
ms clarify the relationships between problems and concepts.
They analyze students’ learning behaviors and performances

to identify connections, aiding educators in understanding
the foundational concepts for advanced problems. For exam-
ple, an algorithmcan show thatmastering basicmathematical
skills is essential before complex concepts are grasped. These
insights are vital for creating effective teaching strategies and
curricula, allowing educators to logically sequence lessons
and ensuring that students master fundamentals before pro-
gressing to advanced topics.

Advancements such as HGKT [43] and GKT [37] have
significantly improved the interpretability of learning mod-
els. HGKT reveals complex interdependencies between
exercises, enhancing the interpretability of exercise-related
learning progress. Moreover, GKT delves into the latent
relationships between concepts, providing clear insights at
the concept level. Complementary approaches such as SKT
[192] and graph attention networks further augment this clar-
ity by tracing relationships (both pre-requisite and similarity)
between concepts. Thesemethods, alongwith the JKT [194],
collectively enhance the overall interpretability of knowledge
structures, making the connections within the learning pro-
cess more understandable and accessible.

3.6 Discussion

In this comprehensive study, we have evaluated various
xKTmodels, emphasizing interpretability, accuracy, compu-
tational efficiency, and applicability in real-world scenarios.
This analysis elucidates the distinct characteristics and con-
straints of different xKT models, pivotal for enhancing
educational technology tools.

Interpretability Within KT models, the spectrum of inter-
pretability ranges from transparent, ante hoc methods to
intricate, post hoc techniques. Transparent models such as
BKToffer straightforward interpretability due to their simple
probabilistic frameworks, which are beneficial in scenarios
demanding clarity [28]. In contrast, post hoc methods such
as the LRP [176] and LIME [187] methods provide insights
into more complex models suitable for detailed analytical
requirements. However, these methods can be challenging
for nontechnical users to interpret due to their complexity.

Accuracy DLKT models, such as those employing neural
networks, exhibit high accuracy in modeling complex stu-
dent interactions but require substantial tuning and expertise
[36, 44]. These models, while powerful, can be prone to
overfitting and opaque, making their predictions difficult to
interpret. On the other hand, simplermodels such as theBKT,
despite being more interpretable, may not capture complex
learning behaviors effectively, thus limiting their accuracy in
more nuanced educational settings.
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Computational efficiency The computational demands of
KT models vary widely. Simpler structures such as those
in BKT models are computationally efficient and align well
with resource-constrained environments. Advanced models,
particularly ensembling approaches [184], demand signifi-
cant computational power, making them suitable for well-
resourced scenarios but impractical for more constrained
scenarios.

Real-world applicability The applicability of a KT model
heavily depends on the educational context. Transparent
models [126] are ideal in settings where quick and clear
feedback is essential. In contrast, environments that require
deep insights into intricate learning patterns require more
sophisticated models. However, these advanced models,
while offering detailed analysis capabilities, often involve the
downside of higher computational requirements and poten-
tial overfitting issues [148].

In conclusion, the choice of a xKT model requires a
delicate balance between interpretability, educational envi-
ronment complexity, accuracy needs, and computational
resource availability. Future developments in xKT should
aim to integrate these factors, pursuing models that provide
both clarity and depth in understanding diverse learning pat-
terns adaptable across various educational contexts.

4 Explainable knowledge tracing: evaluation
method

Although many researchers have shown interest in explain-
able knowledge tracing,mostmodel evaluationmetrics focus
on evaluating themodel performance,while existing research
evaluating interpretability is scarce [22]. The process of
imparting knowledge from teachers to learners needs to be
highly explanatory and understandable. As an intelligent
auxiliary tool in the teaching process, an AI model cannot
be trusted by users only by its high accuracy [205, 206].
Based on the above, it is also worth evaluating these existing
explainable knowledge tracing models.

The following sections begin with a brief introduction to
the common evaluationmethods in xAI and then explore how
we can develop a standardized and reasonable interpretable
evaluation system for educational models on knowledge
training tasks. The goal is to improve the user’s understand-
ing and trust in an education model and realize the wide
application of intelligent education products in education.

4.1 A case study: comparison of interpretable
methods for knowledge tracing

As mentioned in Section 3, transparent models such as
Bayesian knowledge tracing are explained by their internal

parameters, while deep learning-based knowledge tracing
requires additional specific interpretation methods. “Are
all models in all defined-to-be-interpretable model classes
equally interpretable [207]?” To compare the unified inter-
pretation results for the same model and dataset, we use
three common post hoc xAI interpretable methods, LRP,
LIME, and SHAP, to explain the deep knowledge tracing
in ASSISTment2009 [208], as shown in Fig. 13. For this
dataset, we selected two interactive sequences, each with a
length of 25, from two different learners to be explained.
Using the aforementioned methods, we calculated and visu-
alized the interpretable features of the interactive sequences
for each respondent. This comparison provides insights into
the effectiveness and interpretability of eachmethod, helping
us to better understand how the model can make predictions
for deep knowledge tracing.

In Fig. 13, Row 1 indicates the question ID, Row 2 indi-
cates the correctness of the corresponding question, where 1
represents the correct answer, and 0 represents an incorrect
answer, Row 3 is the model prediction, which indicates the
probability of correct answers, and Rows 4-6 represent the
eigenvalues calculated by LRP, LIME, and SHAP, respec-
tively. The model correctly predicts position 24 for student
1, and the LIME method better handles the phenomenon of
incorrect prediction at positions 14, 18, and 21. Similarly,
when the model predicts the problem at position 24 with a
low probability (0.56) for Student 2, all three methods can
assign different eigenvalues to the irrelevant problem at posi-
tion 23. Through the above two examples, it is found that the
LRP method tends to transition the feature contribution of
continuous problems smoothly, the LIMEmethod distributes
the feature contribution more evenly, and the SHAP method
is more focused on sharing the features of current problems.

In the deletion experiment, as shown in Fig. 14, three
lines representing different deletion strategies-random dele-
tion (green), deletion based on the LIME method-for which
the feature importance was calculated (yellow) and deletion
based on the LRPmethod-for which the relevance was calcu-
lated (blue) are observed. The x-axis represents the deletion
of 0 to 10 pairs of the original input data, and the y-axis rep-
resents the LSTM model’s predicted values. Before x=4, the
LRP line is below the green line, the green line is below the
LIME line, and the LIME line shows the steepest decrease.
The difference between the green and LRP lines is approxi-
mately 0.5, and the difference between the green and LIME
lines is approximately 1-2. After x=4, the LIME line con-
tinues to decline rapidly, reaching a plateau after x=6. The
descent of the LRP line accelerates after x=4, decreases
below the green line by approximately 0.5, and plateaus after
x=8. The green line remains above the other lines, exhibiting
fluctuations after x=7 but converging with the other lines at
approximately x=10.
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Fig. 13 Comparison of post-hoc interpretability methods on deep knowledge tracing

In conclusion, different deletion strategies significantly
impact the model interpretability and robustness. The LIME
method shows high sensitivity to small deletions but plateaus
for larger counts. The LRP method performs better at cap-
turingmodel changes with larger deletions. Random deletion
shows relative robustness butmaynot capture complexmodel
changes. The results emphasize the importance of choosing
appropriate feature deletion strategies for interpreting model
behavior. Further research could explore combining different
interpretationmethods for a comprehensive understanding of
model behavior.

All three approaches explain deep knowledge tracing
models, but which approach is closest to reality? The inter-
pretability of models has become an urgent problem. The
following sections briefly introduce the common evaluation
methods used in KT and xAI and then explore how we can
develop a standardized and reasonable interpretable evalu-
ation system for educational models on knowledge tracing
tasks. The goal is to improve the user’s understanding and
trust in the education model and realize the wide application
of intelligent education products in education.

4.2 Common evaluationmetrics for knowledge
tracing

The accuracy (ACC) and area under the curve (AUC)
are the two main metrics commonly used to evaluate the

performance of knowledge tracingmodels. The accuracy rep-
resents the proportion of correct prediction results among all
the results. The AUC is the area under the ROC curve, and
a lower coordinate axis indicates that the probability of a
positive prediction is greater than that of a negative predic-
tion. Therefore, the higher the AUC value is, the better the
model being evaluated can achieve classification. However,
it’s important to note that while these metrics are instrumen-
tal in evaluating the model’s predictive accuracy, they do not
contribute to the evaluation of the model’s interpretability.

Fig. 14 Deletion experiment for LRP and LIME methods
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Table 7 Summary of Evaluation Metrics for xKT

User Category Stakeholders Evaluation Metrics References

Professional Users Developers Objective metric(stability, fidelity, sensibility, ect.)
Human-machine interaction
Multi-disciplines integration

[80, 81]
[209, 210]
[211–213]

Non-professional
Users

Educators,
Learners

Subjective metrics (interviews, questionnaires, scale analyses)
Social experiment

[214, 215]
[216]

4.3 Evaluationmetrics for explainable knowledge
tracing

Inspired by the classification of xAI evaluation methods
[80] in the previous section, in this section, the evaluation
methods for explainable knowledge tracing are presented,
summarised in Table 7. As discussed above, “humans” are
the main component of the whole educational loop. There-
fore, to evaluate xKT, in this paper, models are evaluated
from a subjective perspective, that is, focusing on evaluat-
ing xAI systems concerning the target audience and specific
interpretability goals. Therefore, we divide the educational
subjects into three categories in the task of knowledge trac-
ing: KT educators, learners, and developers. Considering the
different interpretability goals of the three types of stakehold-
ers in the educational process, in this section, we elaborate
on the interpretability of each category of subjects in the
follow-up.

4.3.1 From the perspective of professional users

From the perspective of KT developers, according to the
xAI user classification standard in the previous section [80],
developers are considered professional users. In general,
developers are usually AI scientists and data engineers who
designmachine learningmodels and interpretable techniques
for xAI systems. Compared with nonprofessional users, pro-
fessional users are clearer about the operation mechanism of
themodel. How to provide reasonable and scientific explana-
tions according to the different needs and abilities of different
end users is a problem that professional users need to con-
sider.

Adopt objective metrics Developers should leverage quan-
titative evaluation methodologies within the realm of xAI
for evaluating xKT processes. These methodologies include
the deployment of standardized objective metrics, such as
stability [80], fidelity [80], and sensibility [81], to appraise
the congruence in xKT’s interpretation of proximate or anal-
ogous data instances and the accuracy in approximating
black-box model predictions. However, it is pertinent to
acknowledge that the technical nature of these methods may
render them less accessible to laypersons, potentially imped-
ing their efficacy in broader evaluative contexts.

Human-machine interaction Weadvocate for the integration
of advanced human-machine interaction [209, 210] technolo-
gies to facilitate a dynamic interaction loop between users
and AI models. In this loop, the AI system should adapt its
outputs based on feedback from the user, who may function
as a teacher or learner, utilizing actions such as modifying
data labels or assessing the validity of decisions made by the
model. This approach fosters amore immersive evaluation of
the model interpretability, striving to harmonize human intu-
ition with artificial intelligence insights for more effective
assessment. Essential to this process is the active engagement
between developers and end users, as user-centric feedback
is critical for the iterative refinement of explanatory mecha-
nisms offered by the model.

Multi-disciplines integration Finally, a collaborative appro-
ach with specialists in cognitive psychology or educational
theory [211] is recommended. Cognitive psychology princi-
ples, particularly mental model theories [212], can be instru-
mental in conceptualizing a framework for understanding
human-machine interaction and behavior. This understand-
ing is crucial for an effective evaluation of AI interpretability.
Furthermore, incorporating insights from educational mea-
surement theories [213] enables developers to ascertain
whether AI model predictions align with established cog-
nitive learning patterns, thereby facilitating a more robust
evaluation of the model interpretability.

4.3.2 From the Perspective of Non-professional Users

From the perspective of evaluating the interpretability of a
model with teachers and learners as the subject, according to
the xAI user classification standard in the previous section,
teachers and learners are considered nonprofessional users,
who do not understand the internal structure and operation
mechanism of the model and consider an AI model a “black
box”. Therefore, how to improve the model transparency and
the user’s reliance is a problem that requires increased atten-
tion.

Adopt subjective metrics Researchers can choose the sub-
jective evaluation method in xAI. For example, interviews,
questionnaires, and scale analyzes are used to evaluate the
validity of explanations provided models and the satisfaction
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and trust of users so that nonprofessional users can under-
stand and trust model decisions [214, 215]. Before this
process, we should improve the AI literacy of teachers and
learners in advance so that they can provide reasonable and
scientific feedback.

Social experiment It is also possible to attempt to design a
reasonable social experiment of intelligent education to eval-
uate the interpretability of amodel [216]. In brief, researchers
can recruit some stakeholders involved in knowledge tracing
tasks and conduct small social experiments to empirically
study the interpretability of a model. For example, par-
ticipants can evaluate the interpretability of a model by
reviewing the interpretation results.

Generally, in this section, we first analyze the limitations
of the current evaluation metrics for knowledge tracing mod-
els. Next, inspired by the evaluation methods of xAI, we
review the evaluation methods of the xKT model. Specif-
ically, the evaluation methods proposed in this paper are
human-centered and can be subdivided into methods for
professional users (developers) and nonprofessional users
(educators and learners). According to the characteristics of
the two types of target users, corresponding evaluation meth-
ods have been proposed. The goal of this section is to provide
some ideas for evaluating explainable knowledge tracing.

5 Explainable knowledge tracing : future
directions

xKT is emerging at the crossroads of xAI and educational
analysis, driven by the need for effective, comprehensible,
and ethically sound models in education. We will explore
four key future directions that have been identified for their
potential to substantially enhance xKT: Balancing model
performance with interpretability to create sophisticated yet
transparent algorithms, making advanced models accessi-
ble through user-friendly explainable methods, integrating
causal inference to shift from prediction to understand-
ing learning dynamics, and addressing ethical and privacy
concerns in the data-driven educational era. These areas col-
lectively aim to enhance xKT, aligning technical prowess
with evolving educational and ethical demands.

The trade-off between model performance and inter-
pretability in knowledge tracing In knowledge tracing,
the critical future challenge is to balance model accuracy
with interpretability. Achieving this balance requires cre-
ating algorithms that are both precise in prediction and
intuitive in understanding. Future research is expected to
focus on refining deep learning architectures to simplify
structures and integrate advanced attention mechanisms,

aiming to balance high performancewith better interpretabil-
ity [152]. Additionally, a growing trend is the integration
of post hoc interpretability tools such as LIME [187] and
SHAP [186, 188, 197], which offer clearer explanations
for complex model decisions and uncover the underlying
drivers of behavior. Moreover, complex, accurate models are
likely to be blended with simpler, more interpretable mod-
els using advanced ensemble learning techniques [183, 184].
This blend aims to improve the prediction accuracy while
maintaining decision transparency, promoting enhanced edu-
cational quality and personalized learning in knowledge
tracing applications.

User-friendly explainable methods As knowledge tracing
technology evolves, user-friendly explainable methods have
emerged as a core issue [90]. Future research should focus
on designing explainability mechanisms that are transparent
not only to data scientists but also accessible and friendly to
educators and learners. This level of explainability requires
models to produce predictions that are easy to understand,
in addition to clear logic and reasoning processes. Lever-
aging advanced natural language processing technology,
models can generate detailed and comprehensible explana-
tions, clearly articulating the logic behind their predictions.
Furthermore, dynamic and interactive visualization tech-
nologies [91] play a crucial role in intuitively presenting
learners’ knowledge states and learning paths, significantly
enhancing educators’ and learners’ understanding and accep-
tance of model feedback. Additionally, when designing these
models, the intuitiveness of the user interface should be con-
sidered [92, 93], enabling nonexperts to easily interpret and
utilize the model outputs.

Integrating causal inference into knowledge tracing models
Integrating causal inference into knowledge tracing models
is a vital direction for future research. This approach aims
to uncover the actual causal relationships within learning
processes, moving beyond the limitations of correlation-
based analysis prevalent in many machine learning models
[46]. By applying techniques such as counterfactual rea-
soning [217], researchers can explore various hypothetical
scenarios, and such alternative learning strategies might lead
to diverse learning outcomes. This method enables a more
profound understanding of the direct impact of specific learn-
ing activities on educational results. Such in-depth causal
analysis not only improves the scientific rigor and accu-
racy of knowledge tracing models but also offers valuable
insights for the development of effective and personalized
educational interventions [46, 47]. Consequently, knowledge
tracing technology has advanced from simply predicting
outcomes to providing actionable insights for enhancing edu-
cational practices.
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Ethical and privacy considerations in model explainability
research In the realm of knowledge tracing, as efforts inten-
sify to enhance model explainability, parallel emphasis must
be placed on ensuring ethical and privacy considerations
[218]. Research should aim to design explainable models
that not only provide transparent and understandable pre-
dictions but also rigorously protect user data and maintain
ethical integrity. This research will involve developing tech-
niques that balance the need for clarity in howmodels process
and interpret personal data with robust measures to secure
data privacy. Approaches such as differential privacy [219,
220], which anonymizes data to prevent the identification
of individuals, can be integrated with explainable Al frame-
works. These approaches ensure that while models remain
interpretable and that their decisions are transparent to users,
they also adhere to strict privacy and ethical guidelines.
Such research would necessitate a nuanced approach where
explainability does not compromise privacy and ethical stan-
dards guide the transparency of the models.

6 Conclusion

This survey is the first to provide a comprehensive sur-
vey of explainable knowledge about multiple dimensions,
including concepts, methods, and evaluations. Specifically,
according to the xAI classification criteria for the complexity
of explainable object models, we classify the related mod-
els of explainable knowledge training into two categories: 1)
transparent models and 2) black box models. Then, repre-
sentative explainable methods are reviewed in three stages:
ante-hoc stage, post-hoc stage, and other dimensions. Addi-
tionally, includes an investigation into the applications of
explainable knowledge tracing. Furthermore, to fill the gap
in the evaluation methods of explainable knowledge trac-
ing, we consider evaluation methods from the perspective
of education stakeholders. Finally, future research direc-
tions for explainable knowledge tracing are explored. The
field of explainable knowledge tracing is booming, and we
aim to draw researchers’ attention to the interpretability of
algorithms, improve the transparency and reliability of algo-
rithms, and provide a foundation and insight for researchers
who are interested in interpretable knowledge tracing.
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